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In response to the stagnation of computer microprocessor speeds over the past decade,
the design emphasis of novel supercomputing architectures has focused primarily on in-
creasing the overall number of available cores and reducing communication bottlenecks.
Typically, flow solvers have been able to achieve parallel efficiency using domain decompo-
sition, but this approach has the natural limitation that saturation will manifest itself on
a finite number of cores at which point parallel speedup stalls and eventually deteriorates.
In order to improve parallel scalability we seek to leverage the existing knowledge base on
spatial decomposition, while attempting to exploit additional parallelism in the temporal
dimension. Specifically, we explore the case of time periodic flows using Parallel-in-Time
(PinT) variants of the Time-Spectral (TS) method. A framework employing a Python-
based infrastructure is described including a standalone library that can be coupled to
existing flow solvers in order to facilitate PinT calculations. A model problem of a peri-
odic density pulse is used to examine the different discretization options. Implications for
application to wind turbines and rotors are addressed.

I. Introduction

Advances in computing technology have facilitated the solution of problems in computational fluid dy-
namics (CFD) that would have seemed unfathomable mere decades ago. The advent of parallel computing

in combination with seemingly ever-increasing processor speeds suggested that problems of extreme size and
complexity could eventually be solved using traditional algorithms. A sustained and consistent increase in
transistor density since the middle of the twentieth century led to exponential growth of processor clock
speeds, but a natural limit has been reached. In response to the stagnation of clock speeds, the design
emphasis of novel supercomputing architectures has focused primarily on increasing the overall number of
available cores and reducing communication bottlenecks. Typically, CFD flow solvers have been able to
achieve parallel efficiency using domain decomposition, but this approach has the natural limitation that
saturation will manifest itself on a finite number of cores at which point parallel speedup stalls and even-
tually deteriorates; much effort has focused on optimizing algorithms for minimum operation count, which
exacerbates the issue by increasing the communication quotient of the overall budget. Exascale computing
is rapidly approaching, so we are tasked with improving scalability on the next generation of hardware. In
order to accomplish this objective we seek to leverage the existing knowledge base on spatial decomposition,
while attempting to exploit additional parallelism in the temporal dimension to improve speedup where
parallelism in space alone is no longer viable.

While it is often assumed that integration of time-dependent PDEs must necessarily be executed se-
quentially, there is a rather long and rich history of techniques focused on parallel time integration going
back to Nievergelt [1] in 1964. Other work in this field includes [2–22]. Gander [23] offers a comprehensive
survey of such schemes and the reader is directed to the cited reference for additional background. Recent
advancements in Parallel-in-Time (PinT) methods have demonstrated great scalability on an exceptionally
large number of cores [24], but it remains to be seen how well these approaches translate to aerodynamic
flows. The initial objective of this work involves developing a framework to facilitate highly scalable PinT
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calculations and determine what types of problems are best suited for such treatment. Ultimately, we seek
to incorporate parallel time integration within high-fidelity production solvers and leverage the vast compu-
tational resources expected with the impending arrival of Exascale hardware to dramatically reduce compute
times for realistic problems involving rotors and turbines.

Time-periodic flows are particularly amenable to PinT time integration as they are invariant in the
frequency domain and can therefore be treated as a steady-state problem in space-time. Fourier pseudospec-
tral methods were developed to exploit this fact by capitalizing on the spectral resolution properties of the
Fourier series to provide accurate solutions using a limited number of temporal degrees of freedom. In such
calculations, the instantaneous solution at N time samples over the period are solved simultaneously by
approximating the temporal derivative with an infinitely-supported differentiation operator derived from the
discrete Fourier transform. Mavriplis and Yang [25] distributed the time instances to different processors
providing temporal parallelism in addition to spatial parallelism. The infinite support of the differentiation
operator requires significant communication between the solution at the various time instances which can
stifle the efficiency of the PinT Fourier-based methods. Therefore, alternative PinT schemes for periodic
flows are being explored with the goal of providing solutions in a fraction of the time taken by tradition
sequential time-advancement schemes.

Aerodynamic calculations often involve a number of complexities such as relative motion between com-
ponents, turbulence modeling and irregular meshes. We have elected to forgo such complications and initiate
this work on fixed grids using a lightweight Cartesian flow solver that was developed as a testbed for novel
numerical schemes. We will explore Parallel-in-Time time integration for the case of time periodic flows
using variants of the Time-Spectral method. We first apply the PinT method to a wind turbine problem
where the rotor blades are modeled using an actuator line module. Based on the flow signature, we analyze
an even simpler problem consisting of a periodic density pulse to characterize accuracy and scalability of
various periodic PinT approaches.

Following an introduction of the compressible Navier-Stokes equations in §II, the paper continues with a
description of the spatial (§III) and temporal (§IV) discretization options available in the solver framework.
The various modules of the framework are outlined in §V including its Python-based infrastructure, the
Cartesian flow solver, the standalone PinT library, the domain connectivity module and the actuator line
model that provides relevant test cases without the need to handle moving geometry with dynamic hole
cutting. The aforementioned numerical experiments are presented in §VI.

II. Governing Equations

The Navier-Stokes equations are statements of the conservation of mass, momentum and energy that can
be expressed in Cartesian coordinates in strong conservation-law form.

∂q

∂t
+∇ · F (q) = 0 (1)

The state vector, q = {ρ, ρu, e}T , consists of the conserved quantities of mass, momentum, and energy in
three spatial dimensions. The flux vector, F, is decomposed into its convective and viscous constituents,
F = Fc − Fv.

q =


ρ

ρu1

ρu2

ρu3

e

 , F ci =


ρui

ρu1ui + δi1p

ρu2ui + δi2p

ρu3ui + δi3p

(e+ p)ui

 , F vi =


0

τi1

τi2

τi3

ujτij + ki


The viscous stress tensor, τ , and heat flux, k, are defined as

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
+ λδij

∂uk
∂xk

ki = κ
∂T

∂xi
=

γ

γ − 1

µ

Pr

∂

∂xi

(
p

ρ

)
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where the absolute viscosity, µ, is defined as a function of temperature, T , according to Sutherland’s law.
The equation of state for an ideal gas closes the system.

p = (γ − 1)

[
e− 1

2
ρ (uiui)

]
The ratio of specific heats, γ, is taken to be 1.4, the Prandtl number, Pr, is fixed at 0.71 and the speed of
sound is defined as a =

√
γp/ρ.

III. Spatial Discretization

A high-order Cartesian flow solver is used as the main testbed for all of the numerical methods investigated
as part of this work. The Cartesian formulation provides an efficient solution process and the ability to easily
implement high-order schemes. The solver is equipped with up to sixth-order accurate finite differences of the
inviscid flux, Fc = {E,F,G}, in combination with first-, third- or fifth-order accurate artificial dissipation
terms. Additionally, second- and fourth-order accurate viscous flux discretizations have been implemented.
Insight gained applying Parallel-in-Time methods to the Cartesian solver should directly translate to other
types of discretizations and mesh topologies.

The inviscid finite-difference spatial discretizations are expressed in pseudo-finite-volume form.

∂E

∂x
≈ Êi+1/2 − Êi−1/2

∆x
(2)

The total inviscid flux evaluated at the cell-face, Ê, is a combination of the the physical flux term, Ẽ, and
the artificial dissipation term, D̃.

Êi+1/2 = Ẽi+1/2 − D̃i+1/2 (3)

The physical fluxes corresponding to central differences of second-, fourth- and sixth-order accuracy are
defined as:

ẼIIi+1/2 =
1

2
(Ei+1 + Ei) (4)

ẼIVi+1/2 = ẼIIi+1/2 +
1

12
(−Ei+2 + Ei+1 + Ei − Ei−1) (5)

ẼV Ii+1/2 = ẼIVi+1/2 +
1

60
(Ei+3 − 3Ei+2 + 2Ei+1 + 2Ei − 3Ei−1 + Ei−2) (6)

The second-, fourth- and sixth-difference dissipation terms, which are first-, third- and fifth-order accurate,
respectively, are defined as:

D̃II
i+1/2 =

|σ|i+1/2∆x

2

∂q

∂x

∣∣∣∣
i+1/2

(7)

D̃IV
i+1/2 = −|σ|i+1/2∆x3

12

∂3q

∂x3

∣∣∣∣
i+1/2

(8)

D̃V I
i+1/2 =

|σ|i+1/2∆x5

60

∂5q

∂x5

∣∣∣∣
i+1/2

(9)

where σ is the spectral radius of the inviscid flux Jacobian scaled by the dissipation coefficient. The discrete
form of these derivatives are defined as:

D̃II
i+1/2 =

|σ|i+1/2

2
(qi+1 − qi) (10)

D̃IV
i+1/2 = D̃II

i+1/2 −
|σ|i+1/2

12
(qi+2 + 3qi+1 − 3qi − qi−1) (11)

D̃V I
i+1/2 = D̃IV

i+1/2 +
|σ|i+1/2

60
(qi+3 − 5qi+1 + 5qi − qi−2) (12)
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Spatial discretization reduces the governing Navier-Stokes equations to an ODE form denoted by

d

dt
q + R (q) = 0 (13)

where R (q) is the discrete spatial residual.
Standard practice involves combining fourth-difference dissipation with either second- or fourth-order

accurate inviscid flux differences and sixth-difference dissipation with sixth-order accurate inviscid flux dif-
ferencing resulting in schemes that are overall second-, third- and fifth-order accurate, respectively. Two
fringe layers are required for each block using second- and third-order accurate (i.e. second- and fourth-order
central differencing plus fourth-difference dissipation) schemes and a third fringe layer is required for the
fifth-order accurate (sixth-order central differencing plus sixth-difference dissipation) scheme.

All of the numerical results presented in §VI employ second-order accurate inviscid flux differencing
with third-order accurate artificial dissipation and second-order accurate viscous flux differencing (where
applicable).

IV. Temporal Discretization

The conventional approach for evolving the solution of time-dependent discretized PDEs involves what
will herein be referred to as Sequential- or Serial-in-Time (SinT) time integration. In this approach, the
solution is advanced forward in time by a single physical time step in an iterative manner until the desired
final time is reached. The most common method for integration of unsteady PDEs has been a single step
scheme such as the first-order explicit forward Euler or the implicit backward Euler methods. Higher accuracy
can be achieved using additional time samples, as is the case for linear multistep methods (the most popular
choice being the second-order BDF2 scheme) or multi-stage methods such as explicit or implicit Runge-Kutta
methods.

Other solution methods are available for the case of periodic flows that take advantage of the steady
nature of such flows in the frequency domain. Fourier pseudospectral methods have demonstrated marked
success in reducing the computational costs associated with simulating periodic flows [26]. The trigonometric
representation of periodic phenomenon provides spectral convergence as the number of time-samples, and
correspondingly, the number of resolvable harmonics increases. The spectral convergence rate of Fourier
methods is superior to the algebraic convergence rates associated with traditional time-marching schemes for
unsteady calculations, implying that a given level of accuracy can be achieved with significantly fewer degrees
of freedom [27]. Using this approach, the solutions at N equispaced time instances are coupled through the
temporal derivative term and solved simultaneously. Mavriplis and Yang [25] elected to distribute the
N time instances to different processors to achieve fully parallel (space and time) calculations. We also
follow a parallel space-time approach in the same vein. Additionally, to mitigate the large communication
requirements for the parallel Time-Spectral scheme, an algebraically-accurate analog using a circulant central
difference operator is introduced with goal of achieving improved scalability.

IV.A. Explicit Runge-Kutta Method

Runge-Kutta methods provide high-order accurate explicit and implicit time-integration. The default explicit
time-marching scheme is the low-storage three-stage Runge-Kutta (RK3) scheme proposed by Wray [28]. The
scheme is given as follows:

qp = qn +
α1

∆t
R(qn) (14)

q∗ = qn +
α2

∆t
R(qn) (15)

q∗∗ = qp +
α3

∆t
R(q∗) (16)

qn+1 = qp +
α4

∆t
R(q∗∗) (17)

The coefficients [α1, α2, α3, α4] are equal to [ 1
4 ,

8
15 ,

5
12 ,

3
4 ] respectively. This scheme requires only two

storage locations for the field variables: one that can be reused for qn, qp and qn+1 and another that can be
reused for q∗ and q∗∗.
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IV.B. Backward Difference Formula (BDF)

Implicit schemes are often desirable for stiff systems that would impose a prohibitively small time step
restriction on explicit discretizations. One of the most popular implicit time-marching methods is the family
of Backward Difference Formula (BDF) schemes. The first-order backward difference scheme (BDF1) only
depends on the solution at the current time step.

qn+1 − qn
∆t

+ R
(
qn+1

)
= 0 (18)

The second-order backward difference scheme (BDF2) relies additionally on the solution at the previous time
step (BDF1 is often used as a startup procedure for BDF2).

3qn+1 − 4qn + qn−1

2∆t
+ R

(
qn+1

)
= 0 (19)

Typically we employ a dual time-stepping procedure for BDF schemes [29] to ensure sufficient reduction of
the unsteady residual at each physical time step. This is accomplished by adding a pseudotime continuation
term and advancing the solution such that the subiterate s + 1 converges sufficiently within each physical
time step.

qs+1 − qs
∆τ

+
3qs+1 − 4qn + qn−1

2∆t
+ R

(
qs+1

)
= 0 (20)

In order to solve this nonlinear system of equations, we linearize the residual about the state vector at
subiteration s and manipulate the equations into delta-form,[

I + ∆τ̃
∂R

∂q

∣∣∣∣
s

]
∆q = −∆τ̃

[
3qs − 4qn + qn−1

2∆t
+ R (qs)

]
(21)

where ∆q = qs+1 − qs and ∆τ̃ = ∆τ/
(
1 + 3∆τ

2∆t

)
.

Starting from an initial condition, the solution is updated over a number of subiterations using one of
the implicit operators described in §V.A. The process continues until a specified number of subiterations, S,
has been computed or until a specified reduction in the unsteady residual is achieved (typically two or more
orders of magnitude). The solution is then assigned to qn+1 and the algorithm proceeds using the solution
from the preceding time step as the initial condition for the subsequent time step. BDF2 is the default
sequential time-advancement scheme.

IV.C. Time-Spectral Method

Forced periodic flows arise in a broad range of aerodynamic applications such as rotorcraft, turbomachinery,
and flapping-wing configurations. The standard procedure for simulating such flows involves advancing the
unsteady governing equations forward in time long enough for the initial transient to exit the computational
domain and for a statistically stationary flow to be achieved. It is often necessary to simulate several periods
of motion to accomplish this task, making unsteady design optimization prohibitively expensive for many
realistic problems. An effort to reduce the computational cost of these calculations led to the development
of the Harmonic Balance (HB) method by Hall et al. [30, 31], which capitalizes on the periodic nature of
the solution, while maintaining the ability to resolve nonlinearities inherent in the underlying physics. This
approach exploits the fact that time-periodic flow, while varying in the time domain, is invariant in the
frequency domain. Expanding the temporal variation at each spatial node as a truncated Fourier series
transforms the unsteady governing equations into a coupled set of steady equations in integer harmonics
that can be tackled with the acceleration techniques afforded to steady-state flow solvers. Other similar
Fourier pseudospectral approaches, such as the Non Linear Frequency Domain (NLFD) [26,32,33], Reduced
Frequency [34], and Time-Spectral (TS) [35–37] methods, were also developed. These methods can be applied
both to flows where the fundamental frequency is known a priori (e.g. rotorcraft, turbomachinery, etc.) or
not (e.g. vortex shedding off of a bluff body)1 and a recent extension by Mavriplis and Yang and Yang et al.

1McMullen [38] developed a gradient-based approach for Fourier pseudospectral schemes to determine the response frequency
if unknown or not assumed a priori.
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[25,39] provides treatment for quasi-periodic flows characterized by strong periodic content in addition to a
slowly varying mean (e.g. rotorcraft undergoing a maneuver). The same work introduced the utilization of
an additional dimension of parallelization by instantiating the various time samples on different processors,
resulting in a PinT Time-Spectral approach that we follow here. There have also been efforts to relax the
infinite support of these methods by employing finite elements in time [40]. Here, the solution is expanded
within time slabs (no longer restricted to periodic or quasi periodic problems) and coupled to the previous
time slabs and solved sequentially. Temporal parallelism is still achieved between the degrees of freedom
within each time slab.

We are investigating a more basic approach to improve the parallel scalability of the traditional Time-
Spectral method that forfeits the spectrally-accurate, yet dense differentiation operator, in favor of an alge-
braically accurate operator with a smaller bandwidth that is independent of N ; this approach is currently
restricted to periodic flows.

Standard Time-Spectral Method

The standard Time-Spectral method is derived as a Fourier collocation scheme [25,41] for a time-periodic
solution, q, starting from the semi-discretized governing equations.

d

dt
q + R (q) = 0 (22)

Since the solution is assumed a priori to be periodic in time, such that q (t+ T ) = q (t), it can be expressed
as a Fourier series whose basis functions, φk (t) = eiωkt, are the complex exponentials in integer harmonics
of the fundamental frequency, ω = 2π/T .

q (t) =

∞∑
k=−∞

q̃kφk (t) (23)

A discrete approximation is required, and therefore the Fourier series is truncated to N terms which retains
K harmonics of the fundamental frequency,

q (t) ≈
∑
k∈K

q̃kφk (t) (24)

where

K =

{
(N − 1)/2, N odd
N/2− 1, N even

(25)

with the following set of integer harmonics, K.

K =

{
{−K, . . . ,K}, N odd

{−1−K, . . . ,K}, N even
(26)

The method of weighted residuals is applied to approximate the solution to PDEs by minimizing a discrete
residual, RN , of Eq. 22.

RN (t) =
∂

∂t
q (t) + R (q (t)) (27)

It requires that RN integrates to zero against an appropriate set of test functions, ψ, over the period [42].

(RN , ψn)w =

∫ T

0

RN ψn w dt = 0, ∀n ∈ {0, . . . , N − 1} (28)

The choice of weight and test functions, w = 1 and ψn = δ (t− tn), respectively, defines a collocation scheme
as it eliminates the discrete residual at each of the collocation points, tn, where qn = q (tn).

d

dt
qn + R (qn) = 0, ∀n ∈ {0, . . . , N − 1}, (29)
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Because the temporal basis functions are the complex exponentials, the collocation points are distributed
uniformly over the period, tn = nT/N .

The temporal derivative in Eq. 29 is evaluated by analytically differentiating the truncated Fourier series
in Eq. 24

d

dt
q (t) =

∑
k∈K

iωkq̃ke
iωkt (30)

where i =
√
−1. The Fourier coefficients, q̃k, are determined from the solution values at the N collocation

points by applying the discrete Fourier transform.

q̃k =
1

N

N−1∑
n=0

qne−iωktn (31)

While this results in a pseudospectral method, it enables spatial operators from existing flow solvers to be
leveraged directly because the spatial residual operator, R (q), is evaluated in the time domain (in contrast
to pure spectral methods).

Substituting the definition of q̃k from Eq. 31 into Eq. 30 defines the temporal derivative at a particular
time sample, tn, as a weighted sum of the solution at every other time sample (dnn = 0).

d

dt
qn =

∑
k∈K

iωk q̃ke
iωktn (32)

=

N−1∑
j=0

(
1

N

∑
k∈K

iωkeiωk(tn−tj)

)
qj (33)

=

N−1∑
j=0

dnj q
j (34)

Defining the time derivative at each collocation point and collecting the expressions into matrix form
arrives at the definition of the Fourier interpolation derivative operator [43]; the time-domain temporal
differentiation operator, DN , acts on the time-history of the solution at a particular point in space, x,
q (x) = {q (x, t0) , . . . , q (x, tN−1)}T .

d

dt
q (x) = DNq (x) (35)

The elements, dnj , of the temporal differentiation operator, DN , are defined as follows [36]:

dnj =

{
2π
T

1
2 (−1)

n−j
Φ
(
π(n−j)
N

)
, n 6= j

0, n = j
(36)

where Φ (θ) = csc (θ) for N odd and Φ (θ) = cot (θ) for N even. Replacing the analytic temporal derivative
in Eq. 29 with the discrete approximation in Eq. 34 results in the global system of equations.

N−1∑
j=0

dnj q
j + R (qn) = 0, ∀n ∈ {0, . . . , N − 1} (37)

We can apply pseudotime continuation to Eq. 37 to drive the system of equations towards a converged
discrete solution.

d

dτ
qn +

N−1∑
j=0

dnj q
j + R (qn) = 0, ∀n ∈ {0, . . . , N − 1} (38)

Equation 38 is iterated in pseudotime until satisfactory convergence is achieved. The solution can then
be reconstructed at any point in continuous time by applying Eq. 24 to the converged Fourier coefficients
determined by the DFT (Equation 31).
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As mentioned above, Mavriplis and Yang [25] and Yang et al. [39] extended the scope of the Time-Spectral
method to include quasi-periodic flows by resolving a slowly-varying mean flow in addition to the strong
periodic content. The method is derived via polynomial subtraction and includes a relatively low-order
polynomial representation of the solution as it moves from one period to the next; the spectrally-accurate
representation of the original TS approach is used to capture the dominant periodic content. The period of
oscillation is treated as a large physical time step which is used for the BDF approximation and N sub-steps
are used within each physical time step to resolve the periodic content. We intend to incorporate this hybrid
BDF/TS scheme in the future.

Finite Difference Method in Time (FDMT)

The Fourier interpolation differentiation operator described in the previous section has the property of being
an optimally-accurate central difference operator with a bandwidth equivalent to one half the number of time
samples, i.e. a dense matrix. This provides spectrally-accurate differentiation, but requires data from every
time sample due to the infinite support of the complex exponential basis functions from which it is derived.
With a goal of using time-parallelism to reduce the wall time by a factor of a hundred or a thousand, we
expect to use between 100 to 1000 time samples or more; using a spectrally-accurate operator is perhaps
overkill in this scenario and may be prohibitively expensive. Thus, alternative approaches that abandon
infinite support of the Fourier representation are being investigated.

The most straightforward approach in this effort retains central differencing while reducing the bandwidth
of the temporal differentiation operator. This is accomplished by employing circulant 2nd-, 4th-,..., pth-
order accurate central difference operators in time. For the standard Time-Spectral method, the temporal
differentiation operator, DN , is dense but the temporal differentiation operator for the finite-difference
approach, Dp

N has a bandwidth of only M = p/2. Thus, the temporal derivative at a particular time sample
is expressed as a weighted sum of the solution of the M nearest neighbors.

d

dt
qn =

M∑
j=1

dpj
(
qn+j − qn−j

)
(39)

The coefficients for the second-, fourth- and eighth-order accurate Finite-Difference Method in Time (FDMT-
p) schemes are defined as follows:

dII =
ωN

2π

{
1

2

}
dIV =

ωN

2π

{
2

3
,− 1

12

}
dV III =

ωN

2π

{
4

5
,−1

5
,

4

105
,− 1

280

}
where 2π/ωN = T/N = ∆t.

In this approach, the temporal communication is limited to the nearest M neighbors for an operator of
accuracy p = 2M . Thus, as the number of time-steps per period, N , grows, we expect the problem to scale
weakly on N processors as the communication footprint is fixed, unlike in the Time-Spectral approach where
the bandwidth, and correspondingly the communication burden, grows linearly with N . Figure 1 demon-
strates the sparsity, or lack thereof, of the temporal differentiation operators for the Time-Spectral method
and a second-order periodic central difference approach (FDMT-2). Naturally, the accuracy per degree of
freedom is reduced in the case of finite differences, but the extreme reduction of temporal coupling has
powerful advantages in the context of temporal parallelism; a weakly-scaling compactly-supported approach,
provided with the ability to leverage a large numbers of cores, will hopefully enable PinT calculations of
periodic flows with the required resolution2 in significantly reduced wall time with respect to serial time
integration.

The TS operator is purely imaginary so we have focused initially on undamped central difference oper-
ators; it has been shown that temporal dissipation has been successful for TS applications [44–46] so finite-
difference-based temporal artificial dissipation will be explored as part of future work in addition to one-sided

2State-of-the-art rotorcraft calculations typically employ second- to fourth-order accurate temporal discretizations using
0.25° time steps (∆t = T/1440).
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circulant differentiation operators (e.g. BDF2). Consequently, application of a compactly-supported differ-
entiation operator also alleviates the difficulties associated with applying the TS method within the overset
grid approach, where complete time-histories of the solution may not be universally defined [45,47].

V. Solver Framework

Ultimately we are interested in applying temporal parallelism to full-scale, high-fidelity solvers such as
the CREATE-AVTM Helios package which is the state-of-the-art rotorcraft simulation code. However, in
the interest of rapid development and testing, we have elected to forgo the complexities associated with
such codes and focus instead on a simplified analog employing a Python-based infrastructure similar to the
production version. Worthwhile advances realized with the research code will be incorporated into Helios in
subsequent releases.

There are several elements that comprise the solver framework including the base Cartesian flow solver,
a standalone PinT library for periodic flows, an actuator line module enabling rotor simulations without
requiring moving geometry, a domain connectivity module to connect Cartesian blocks of different refinement
levels and the high-level Python-based infrastructure to facilitate data transfer between the different modules
and control the advancement of the overall solution procedure.

V.A. Cartesian Flow Solver

The sole flow solver currently available in the framework is a lightweight, efficient and scalable high-order
Navier-Stokes solver (See Figure 2) with both explicit and implicit time-marching schemes. The grid system
consists of a hierarchy of Cartesian meshes using fixed refinement between levels. Each level is partitioned into
an appropriate number of blocks; communication between blocks is handled internally but communication
between grid levels in handled by a separate domain connectivity module (See §V.D). Several available
linear solvers include Lower-Upper Symmetric Gauss-Seidel (LU-SGS), Alternating Direction Implicit (ADI),
Diagonally-Dominant ADI (DDADI), Gauss-Seidel Line Relaxation (GSLR) schemes and a point-wise Gauss-
Seidel (GSP) scheme with concurrent data communication between blocks at the linear iteration level.
A GMRES solver has also been implemented that applies the aforementioned approximate-factorization
schemes to precondition the resulting linear system.

Implicit Operators

Newton-linearization of the discrete form of the governing PDE, R(q) = 0 (e.g. the right-hand side of Eq.
21), can be written as[

I

∆τ
+
∂R
∂q

]
∆q =

[
I

∆τ
+
∂RX

∂q
+
∂RY

∂q
+
∂RZ

∂q

]
∆q = −R(qs) (40)

For efficiency, the implicit operator (LHS of Eq. 40) is formulated using a lower order formulation of the
interface fluxes and their associated Jacobians. The second order interface flux formulation is given by

F̂x+ 1
2

=
1

2

(
Fx + Fx+1 −Dx+ 1

2
(qx+1 − qx)

)
, (41)

where F represents physical fluxes and D represents the dissipation. On linearization, this flux function
yields operators that can be written as:

∂Rx

∂q
∆qjkl = [Ax]∆qx−1 + [Bx]∆qjkl + [Cx]∆qx+1 (42)

Ax = −1

2

(
∂Fx−1

∂qx−1
+Dx− 1

2

)
Bx =

1

2
(Dx− 1

2
+Dx+ 1

2
)

Cx =
1

2

(
∂Fx+1

∂qx+1
−Dx+ 1

2

)
where x denotes each of the three spatial directions, X, Y and Z, and their indices j, k, and l, respectively.
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In the present work, three line-based techniques are used, namely the approximately-factored alternating
direction implicit (ADI) and diagonally-dominant ADI (DDADI) schemes and a Gauss-Seidel Line Relaxation
(GSLR) scheme. (GSLR). For the ADI scheme, the implicit operator in Eq. 40 is multiplied by the pseudo
time step ∆τ and factorized in each of the coordinate directions and expressed as:[

I + ∆τ
∂RX

∂q

] [
I + ∆τ

∂RY

∂q

] [
I + ∆τ

∂RZ

∂q

]
∆q = −∆τR(qs) (43)

Each of the above operators have a block tridiagonal structure, which are inverted directly using a variant
of the popular Thomas algorithm. In the case of DDADI, the factorized system is written such that there
is a more diagonally dominant term that aids in solution convergence and adds to the numerical stability of
the scheme when compared to the ADI scheme. The DDADI factored scheme is

(D + OX)D−1(D + OY )D−1(D + OZ)∆q = −∆τR(qs) (44)

where the diagonal term D and the O matrices are given by

D = [I + ∆τ ([Bj ] + [Bk] + [Bl])]

OX = ∆τ([Aj ], 0, [Cj ])

OY = ∆τ([Ak], 0, [Ck])

OZ = ∆τ([Al], 0, [Cl])

For the GSLR scheme a Gauss-Seidel sweep is performed on a line basis, i.e. implicit inversion is performed
for each line and the changes in the conservative variables (∆q) are updated to the right-hand-side of
subsequent lines as soon as a new update is available, i.e.

[Aj ]∆qj−1 + [D]∆qjkl + [Cj ]∆qj+1 = −R(qs)

− [Ak]∆q∗k−1 − [Ck]∆q∗k+1

− [Al]∆q
∗
l−1 − [Cl]∆q

∗
l+1

(45)

with the diagonal matrix D given by Eq. 45. The values with the asterisk (∗) indicate intermediate values
obtained during the Gauss-Seidel sweep. To eliminate the sweep bias, symmetry is obtained by sweeping
once in a prescribed direction and then sweeping again in the reverse direction. A detailed discussion on the
applicability of each of these methods is described by Buelow [48]. LU-SGS and point-based Gauss-Seidel
schemes are also available.

GMRES Solver

The Generalized Minimum Residual (GMRES) [49] solver module from the new mStrand code [50] for semi-
structured multi-strand grids has been modified for Cartesian grids and implemented within the framework
to accelerate convergence. The process is described in the provided reference. Each of the linear solvers
outlined above can be used to precondition the GMRES linear system.

V.B. Python-based Infrastructure

The production framework Helios relies on a multi-solver paradigm [51] to simulate complex rotorcraft flows
with realistic geometry. We have modeled the current framework based on the production version using
a similar Python-based infrastructure that handles calling all of the disparate modules that are required
to work in concert. While there are less modules available in the current work, the simplified framework
provides an opportunity for rapid development of novel schemes and solution procedures with the ability
to easily migrate technology to the production version. The Helios framework [52] includes multiple near-
body solvers (structured, unstructured and semi-structured), an off-body Cartesian solver capable of highly-
scalable adaptive mesh refinement, structural coupling, highly-scalable domain connectivity [53] providing
efficient handling of moving bodies and well-defined APIs encouraging continued collaboration with industry,
academia and other governmental entities. In contrast, the simplified framework consists of a single flow
solver using Cartesian grids with fixed refinement, an open-source domain connectivity module [54] and an
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actuator line model used to introduce rotor wakes without the need to handle moving bodies. Additionally,
the current framework includes a standalone library to facilitate PinT calculation.

It is crucial that the Parallel-in-Time capability be agnostic to the flow solver and require only minimal
modifications of the solver(s) in order to enable time parallelism with existing codebases. In the current work,
this involves wrapping the spatial residual evaluation routines (solver.rhs()) and implicit inversion opera-
tion (solver.lhs()) that can be called from the high-level Python controller. The space-time approximate
factorization approach [45–47,55–57] effectively decouples the implicit solutions of the spatial and temporal
systems providing a straightforward implementation of the standalone PinT module; the spatial residual is
passed from the flow solver(s) to the PinT module, which performs the necessary temporal coupling (e.g.
ts.af_update()) and feeds the result back to the flow solver which resumes the spatial inversion process.
Currently, the space-time GMRES solver is implemented entirely within the flow solver, but a more involved
high-level Python controller will be implemented to maintain the decoupling between the flow solver(s) and
the standalone PinT module for GMRES calculations.

V.C. Parallel-in-Time Module

There are several libraries to facilitate PinT time integration for unsteady PDEs such as libPFASST [58]
based on the Parallel Full Approximation Storage in Space and Time (PFASST) library [20, 59] and the
Xbraid code based on the Multigrid Reduction in Time (MGRIT) method [60]. However, we are interested
in the sub-class of unsteady problems that include periodic and quasi-periodic flows resulting from rotors
and turbines. Such flows can be simulated more efficiently using methods specifically designed for periodic
solutions.

To achieve temporal parallelism, the solution for each time sample is instantiated and advanced on
separate processors. The solutions at disparate time samples are coupled through evaluation of the temporal
derivative source term, DNq, and the direct inversion of the temporal operator in the space-time approximate
factorization scheme, if used. Evaluation of the temporal derivative source term is achieved by a sequence of
2bMessage-Passing Interface (MPI) calls, where b is the bandwidth of the operator. For the case of the Time-
Spectral method, b = N/2 or (N − 1) /2 and the process executes in a ring topology [61] where each process
multiples its solution by the appropriate element of the DN matrix and passes it to the subsequent process
(time sample) to be aggregated using MPI_sendrecv_replace. For the case of the FDMT-p approach, only
p MPI_sendrecv calls are required to the M = p/2 neighboring processes. For the case of the space-time
approximate factorization, parallel DFT/IDFT matrix-vector products are performed using N MPI_reduce
calls each to transform the system into the frequency domain, perform the intermediate update using scalar
complex arithmetic, and transform it back into the time domain. After the temporal coupling stage, the
solution process continues execution in parallel.

As the bandwidth of the TS operator scales with N , the method is not expected to scale weakly; the wall
time per iteration is not expect to stay constant if N and the number of processors are doubled because twice
as many sequential temporal coupling steps are required. In contrast, the FDMT approach only requires p
sequential coupling steps and therefore expect the wall time per iteration to remain constant if the problem
size and the number of processors are doubled. However, the total wall time for a computation, texec, is a
product of both the wall time per iteration, titer, and the overall number of iterations required, Niter.

texec = titer ×Niter (46)

While the FDMT approach provides weak scaling for the first component, the current lack of a direct or
GMRES solver prevents weak scaling with respect to the overall execution time; using larger values of N with
the FDMT subiterative scheme imposes a more restrictive time step, and therefore requires more iterations
to reach a given level of convergence. As it stands, the most pressing issue included in future work concerns
development of a more robust FDMT solver that does not directly invert the implicit temporal operator.
The inverse of implicit operator associated with the circulant differentiation matrix is dense and solving such
a system directly forfeits the advantage of the reduced-bandwidth approach.

In addition to performing the necessary temporal coupling, the standalone PinT module is responsible
for defining the necessary MPI communicators. The processes allocated to each grid level, p, are divided into
N time instances, resulting in a spatial partition of px = p/N processes per grid level at a given time level.
The PinT module creates spatial and temporal MPI communicators to facilitate fringe communication in
space and temporal coupling, respectively. Other communicators are created to facilitate domain connectivity
between the different grid levels at a given time instance in addition to providing the desired i/o functionality.
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The following sections outline the solution procedures of the the PinT time integration schemes described
in §IV; implementation details of the standard SinT time marching schemes like Runge-Kutta and implicit
BDF1 and BDF2 defined in sections IV.A and IV.B, respectively, and no further detail is provided.

Starting with the original expression for the system of equations for the Time-Spectral discretization in
Eq. 38, we apply first-order backward Euler approximation to the pseudotime derivative, where qn,s refers
to the iteration s of the solution at time t = tn.

qn,s+1 − qn,s
∆τ

+

N−1∑
j=0

dnj q
j,s+1 + R

(
qn,s+1

)
= 0, ∀n ∈ {0, . . . , N − 1} (47)

We linearize the residual about qn,s and put Eq. 47 into delta form.

∆qn

∆τ
+

N−1∑
j=0

dnj ∆qj +
∂R

∂q

∣∣∣∣
q=qn,s

∆qn = −
[
R (qn,s) +

N−1∑
j=0

dnj q
j,s

]
, ∀n ∈ {0, . . . , N − 1} (48)

We can express Eq. 48 in terms of the complete space-time domain where

∆q = {∆q0, . . . ,∆qN−1}
R (q) = {R

(
q0
)
, . . . ,R

(
qN−1

)
}

are arrays of the update and spatial residual, respectively, over both space and time and DG
N is the global

temporal differentiation operator constructed via permutations of the local temporal differentiation operator,
DN . [

I + ∆τDG
N + ∆τ

∂R

∂q

]
∆q = −∆τ

[
R (qs) +DG

Nqs
]

(49)

Approximate Factorization between Time and Space

To avoid the need to solve the large global system spanning all of the degrees of freedom, we can apply an
approximate factorization (AF) between time and space.[

I + ∆τDG
N

] [
I + ∆τ

∂R

∂q

]
︸ ︷︷ ︸

∆q̄

∆q = −∆τ

[
R (qs) +DG

Nqs
]

(50)

To begin each iteration, the flow solver evaluates the spatial residual, R (qn,s), for each time sample con-
currently and passes the residual and solution arrays to the PinT module. In the temporal coupling stage
of the AF process, dense blocks of the local temporal operator, I + ∆τDN , are solved for an intermediate
update, ∆q̄n, on a point-by-point basis in space.

∆q̄ = −∆τ

[
I + ∆τDG

N

]−1[
R (qs) +DG

Nqs
]

(51)

Holding the pseudo time step constant for each of the time instances at a particular point in space (∆τ is
still free to change in space to accommodate local time-stepping), permits the diagonalization of Eq. 51 via
application of the discrete Fourier transform (DFT); rather than directly inverting the temporal operator in
Eq. 51, a parallel DFT (matrix-vector product using N MPI_reduce calls) is applied to both components of
the RHS of Eq. 50 (the solution and spatial residual3), and the first stage of the AF process is updated in
the frequency domain using complex scalar division (the eigenvalues of DN are λk = iωk).

∆˜̄qk = −∆τ
R̃k + iωkq̃k
1 + ∆τiωk

, ∀k ∈ K (52)

After applying a parallel inverse DFT to the frequency-domain intermediate update, the second stage of
the space-time approximate factorization process continues externally in the flow solver where the desired
linear solver is applied to the remaining spatial problem at each time instance.[

I + ∆τ
∂R

∂q

]
∆qn = ∆q̄n, ∀n ∈ {0, . . . , N − 1} (53)

This approximately-factored Time-Spectral scheme will be referred to herein as AF-TS.
3Alternatively, the TS source term can first be added to the spatial residual requiring only a single parallel DFT/IDFT.
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Subiterative Space-Time Method

Employing a space-time AF scheme as a linear solver or preconditioner to a space-time GMRES formulation
can greatly accelerate convergence by allowing for much larger pseudo time steps when a high frequency or a
large number of time instances is desired. However, the reduced frequency (ωc/Vref) associated with several
problems of interest are quite low; for example, the reduced frequency of a rotor blade with radius R, scales
like c/R. For such problems, it may be desirable to employ a scheme that does not require the direct solution
of an implicit temporal operator. Lakshminarayan et al. [62] developed a dual-pseudotime Time-Spectral
scheme, using a subiteration procedure in a second level of pseudotime to avoid a costly inversion of the
temporal operator while maintaining implicitness in the temporal dimension.

Starting with the expression for the Time-Spectral system of equations after applying backward Euler in
pseudotime (Eq. 47), we can add and subtract an interim iterative state at qn,k.

qn,s+1 − qn,k + qn,k − qn,s
∆τ

+

N−1∑
j=0

dnj q
j,s+1 + R

(
qn,s+1

)
= 0, ∀n ∈ {0, . . . , N − 1} (54)

Setting all of the s+1 terms to the subiteration index k+1 provides a dual-pseudotime subiteration procedure
such that the subiterate qn,k+1 converges sufficiently towards qn,s+1 within each outer iteration to ensure
stability.

qn,k+1 − qn,k
∆τ

+
qn,k − qn,s

∆τ
+

N−1∑
j=0

dnj q
j,k + R

(
qn,k+1

)
= 0, ∀n ∈ {0, . . . , N − 1} (55)

The time-derivative term is lagged at subiteration level k to avoid a costly inversion of the temporal operator
while maintaining a degree of implicitness; often only a modest number of subiterations are required to
maintain the stability of the iterative procedure. Linearizing the residual about qn,k and defining ∆qn =
qn,k+1 − qn,k results in a dual-pseudotime space-time iterative scheme that can be used with either the TS
or FDMT schemes.[

1

∆τlhs
I +

∂R

∂q

]
∆qn = −

[
R
(
qn,k

)
+

N−1∑
j=0

dnj q
j,k +

qn,k − qn,s
∆τrhs

]
, ∀n ∈ {0, . . . , N − 1} (56)

The pseudo time steps on the left and right-hand sides, ∆τlhs and ∆τrhs, respectively, can be taken to be
equivalent or the RHS can be accelerated by selecting ∆τrhs > ∆τlhs. This approach is currently the default
method of solving the FDMT system of equations.

Because this is a nonlinear iteration, this scheme is not directly applicable to GMRES as a preconditioner.
Research is ongoing on incorporating this process as a preconditioner for a space-time GMRES solver.

Space-Time GMRES Solver

Su and Yuan [63] and Mundis and Mavriplis [61] recognized that the decreased diagonal dominance of the
implicit system resulting from the Time-Spectral discretization greatly degrades stability and convergence
when using a large maximum wave-number, ωN ; each elected to overcome this deficiency by incorporating
a solution approach that does not rely upon such a property and implemented Time-Spectral GMRES
solvers for the Euler equations on both structured and unstructured meshes, respectively, with various
preconditioners. They successfully demonstrated wave-number independence of the resulting schemes [64]
providing enhanced convergence for cases involving high frequencies, a large number of time instances or
both. Following their success, we extended the GMRES module from the flow solver to enable Time-Spectral
calculations and employed the space-time approximate factorization, which had been our core solver, as
the preconditioner. Mundis and Mavriplis [65] have also implemented their Time-Spectral GMRES solver
with a space-time approximate factorization preconditioner and have demonstrated its superior performance
over an array of previously developed preconditioners [61, 64, 66]. Currently our GMRES implementation
is limited to the original Time-Spectral method, but we are interested in extending it to the sub-spectral
FDMT approach. Application of the direct space-time approximate factorization for this scheme would undo
the parallel efficiency gains afforded by the reduced bandwidth of the temporal differentiation operator as
the inverse of the circulant operator is dense. Su and Yuan demonstrated a multigrid preconditioner for
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their GMRES implementation and our goal is to include a temporal multilevel approach to precondition
the GMRES-FDMT solver to provide a robust scheme capable of handling large wave-numbers while still
providing an algorithm that scales weakly with respect to time-to-solution; the temporal multilevel approach
will also provide a means to maintain the space-time approximate factorization, which greatly simplifies
integration of flow solvers with a standalone PinT module.

V.D. Parallel Space and Time Domain Connectivity

The Helios off-body solver SAMcart employs the LLNL SAMARAI code [67] to facilitate refinement and
the PUNDIT [53] code supplies efficient, implicit, domain connectivity between all grids. In the current
work we are restricted to fixed grid refinement using the Topology Independent Overset Grid Assembler
(TIOGA) [54] for domain connectivity between different grid levels. For a mesh system that uses a hierarchy
of nested Cartesian grids at different levels, three different MPI communicators are used; the first manages
the spatial data exchange between blocks of the same grid (e.g. halo data at the block boundaries), the second
manages the spatial data exchanges between grids at different levels and the third manages the temporal
data exchange between corresponding grid blocks at different time instances. This approach ensures that
the overset grid connectivity happens only on a purely spatial problem and the entire execution is fully
partitioned and distributed in both space and time.

V.E. Actuator Line Module

Actuator Line/Disk approaches are reduced order models where lifting surfaces such as wings and rotor
blades are modeled using source terms in the governing equations. This approach has gained wide uses in
both rotorcraft [68–70] and wind turbine [71–75] calculations. In general, actuator line methods rely on
reduced order aerodynamics that use a combination of lifting line theory, airfoil tables and unsteady/steady
stall models to compute the forces generated by lifting surfaces. The coupling between the lower order
aerodynamics and higher fidelity CFD is as follows: Lower order aerodynamic models use the velocity field
from the flow solution to compute metrics such as angle of attack, Mach number and Reynolds number
and subsequently use them to determine sectional forces using a multi-dimensional airfoil table lookup.
These sectional forces (~F ) and rate of work performed by them (~F · ~v) are included as source terms to
the momentum and energy equations. Data exchange between CFD and lower-order models happen every
non-linear iteration such that the predicted loading, source terms and velocity field are consistent with one
another. The following works [70, 71, 73, 75] are recommended to the reader for detailed descriptions of the
formulations and nuances of the actuator line approach. The implementation followed by Gopalan et al. [74]
is used in this work. In general, the actuator line method provides a simpler analysis framework to replicate
the flow signature created by a spinning rotor blade, that involves high frequency perturbations that repeat
every blade passage. These perturbations originate in the concentrated tip vortices trailed by the rotor
blades and create Gaussian like perturbations in density and pressure and an anti-symmetric twin-Gaussian
like perturbations in the velocity field. The ability of time-parallel methods to accurately resolve this type
of time-varying flow field is key to extending this approach to more realistic rotary-wing calculations that
use body-conforming grids for the rotor blades. The actuator line model also has the added benefit of
avoiding the complexities associated with applying the Time-Spectral method to dynamic overset meshes
where complete time-histories of the solution are not necessarily available throughout the domain [45,47,76].

VI. Numerical Results

The ultimate objective of this work is to develop a methodology to periodic flows using PinT time
integration in a fraction of the execution time required for the corresponding SinT calculation. The Time-
Spectral method has demonstrated success in reducing the execution time for periodic flows, but has typically,
albeit not exclusively, used a limited number of harmonics as the algorithm scales as N logN at best using
the Fast Fourier Transform to evaluate the TS source term and invert the implicit temporal operator [45].
The PinT version of the method, introduced by Mavriplis and Yang [25] reduced this scaling by exploiting an
additional level of parallelism in time by distributing the time samples and performing the spatial processes
concurrently. However, the density of temporal coupling operator limits the scalability as the bandwidth
grows linearly with N .
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In this section, we introduce the problem of the NREL Phase VI wind turbine and apply the periodic PinT
Time-Spectral method. It becomes readily apparent that a large number of time samples are required to
adequately resolve the flow. The section continues with a simplified problem of a periodic density pulse that
is used to investigate the accuracy and scalability of the PinT TS scheme and the sub-spectral, algebraically
accurate FDMT method.

VI.A. NREL Phase VI Wind Turbine

The two-bladed NREL Phase VI wind turbine [77] has been studied extensively and used here as an a
representative test case of the the types of periodic flows that will ultimately be computed using the periodic
PinT approach. The rotor has a radial frequency of ω = 7.54 rad/s and radius of 5.03 m with a root cut
out of 2.0 m. The freestream Mach number corresponds to an inflow velocity of 10 m/s. A relatively coarse
two-level grid system spans approximately 7.5 blade radii (R) in the y- and z-directions and approximately
37 R in the axial x-direction; each 375×75×75 grid contains just over 2 million points for a total of 4,218,750
points. The fine-level grid spacing of ∆s = 0.25 m is only slightly smaller than the tip chord of c = 0.36
m, but provides a reasonably resolved vortical wake structure while maintaining a manageable grid size for
PinT calculations with our current computational allocation limits. The fine grid spans approximately 17 R
behind the turbine before transitioning to the coarse grid.

Figure 3 depicts the flow field of several Time-Spectral and BDF2 turbine simulations; contours of axial
velocity are plotted in addition to iso-contours of vorticity magnitude. Its is clear that a large number of
modes are required to resolve this flow, as the N = 33 Time-Spectral case still exhibits aliased information
in the plane of the blades. This aliasing problem is analyzed further by examining the transient flow
solution at a sensor point. The sensor point is located at (−0.1, 0.0, 4.5) m relative to the turbine origin
and is traversed by the blades close to their tips. Figure 4 plots instantaneous streamwise momentum, ρu,
computed with the BDF2 scheme in addition to the discrete solution values of Time-Spectral calculations for
N ∈ {3, 5, 9, 17, 33}; reconstructions of the TS solutions are plotted as curves in the corresponding color. The
high-frequency signal transferred from the blade passages poses resolution problems for the TS calculations,
as discussed in [45, 46], including the N = 33 case that exhibits significant Gibbs’ phenomenon. This is
demonstrated further in Fig. 5 where the TS cases using N ∈ {5, 9, 17, 33} are plotted independently with
the transient solution; filtered BDF2 solutions to K = (N − 1) /2 modes are also plotted and reveal that the
TS solutions are plagued by aliasing errors from the unresolved frequencies. We continue in the following
section with a simplified problem of a periodic density pulse that requires a smaller grid system enabling
more extensive analysis.

VI.B. Periodic Density Pulse

A problem of an inviscid periodic density pulse was selected as a simplified problem, absent moving geometry,
to analyze parallel scalability of the TS and FDMT methods without adding additional complexities that
are independent of the core algorithm. The pulse is prescribed via a dynamic inflow boundary condition
with a freestream Mach number of M∞ = 0.5.

The dynamic inflow boundary is defined by as a two-dimensional Gaussian function scaled by a time-
varying kernel, γ (t), which is added to the density on the inflow plane, x0.

ρ (x0, y, z, t) = ρ0 + αe−β(y2+z2)γ (t) (57)

Pressure is extrapolated from the domain interior and all other flow quantities are prescribed. The density
perturbation coefficient, α, is taken as ρ0/10.

Two kernels are investigated; the first case includes just a single forcing frequency, γ (t) = sin (ωt), and
the second case is a more complex function, γ (t) = 2

5+4 cos(2ωt)−1, that includes additional frequency content
and a two-per-period forcing to mimic the two-per-period blade passages of the wind turbine described in
the previous section. BDF2 calculations employ a physical time step of ∆t = T/4096 and both test cases
settle quickly into a periodic steady-state. Figure 6 plots density on a constant y-plane for both the single
frequency (Figure 6a) and two-per-period (Figure 6b) cases on 653 meshes.

Figure 7 plots the convergence of the space-time approximate factorization Time-Spectral scheme for the
single-frequency periodic density pulse for a high reduced frequency of 1. Each 503 grid was partitioned into
fifteen blocks for a total of 15N processors for each calculation for N = 4 through 1024. While the iterative
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convergence of the AF-TS solver is independent of N for a fixed pseudo time step (Figure 7a), the wall
time-to-solution scales linearly with N (Figure 7b); the scaling is more clearly exhibited in Fig. 7c which
demonstrates how the residual versus wall time per time instance curves for each value of N nearly collapse
onto each other.

In order to determine convergence dependence on the fundamental frequency for the available schemes,
we selected three frequencies based on integer multiples of the turbine frequency on the 653 mesh: ω0, 2ω0

and 4ω0. Figures 8 and 9 demonstrate the linear scaling of the periodic PinT Time-Spectral method using an
approximate-factorization as the primary solver and GMRES preconditioner, respectively. Figure 8a plots
space-time residual versus wall time and clearly demonstrates that higher frequencies reduce the convergence
rate. Higher frequencies of more than 4 times the baseline value of ω0 are not resolvable on the selected
spatial grid but we expect the trend to continue for even higher frequency values. While iterative convergence
is essentially independent of N (Figure 8c), the linear scaling of the method is demonstrated in Fig. 8b which
plots space-time residual versus wall time per time instance. Applying the space-time approximate factor-
ization scheme as a GMRES preconditioner significantly improves convergence by removing the frequency
dependence exhibited previously. While the GMRES AF-TS scheme still exhibits linear scaling with respect
to wall time (Figures 9a and 9b), Fig. 9c demonstrates essentially identical iterative convergence for each
case, independent of N or ω.

Figure 10 provides BDF2 and periodic PinT solutions for the TS and FDMT-p methods for p ∈ {2, 4, 8}
for the single-frequency case using the space-time subiterative scheme; instantaneous values of density are
sampled in the center of the domain. Because of the simple waveform, the TS method (Figure 10d) requires
only a single harmonic to resolve the flow. The FDMT-2 case (Figure 10a) demonstrates a phase lag for N=
4 and 8 but manages to captures the shape of the signal successfully. Higher resolution cases of N = 32 and
above match the transient solution within the scale of the figure. The FDMT-4 case (Figure 10b) matches the
transient signal for N = 16 and above and the FDMT-8 (Figure 10c) cases matches the transient signal for
each value of N .4 Figure 12a demonstrates the convergence rates of each scheme; the Time-Spectral method
converges rapidly as only a single mode is required and the FDMT-p methods each exhibit the expected
p-th order convergence rates (the black hashed lines correspond to the second-, fourth- and eighth-order
convergence). Error is evaluated by taking the norm between each solution vector and the exact TS solution,
qex, at N = 512 at time t = 0.

Figure 11 provides BDF2 and periodic PinT solutions for the TS and FDMT-p methods for p ∈ {2, 4, 8}
for the more complex forcing kernel that is designed to mimic the types of signals produced in turbine or rotor
cases with multiple blade passages. The FDMT-2 method (Figure 11a) fails to match the BDF2 solution
within the scale of the figure for even N = 128 case and the significantly under-resolved solutions demonstrate
wild oscillations. The fourth- (Figure 11b) and eighth-order (Figure 11c) accurate discretizations naturally
perform better but even the spectral scheme (Figure 11d) requires a large number of modes to adequately
resolve the signal. The convergence rates of the schemes presented in Fig. 12b demonstrate the expected
performance, but asymptotic convergence is delayed for the algebraic cases. The spectral case requires more
than one hundred time samples to converge and the FDMT-8 scheme performs nearly as well.

Because the Time-Spectral method requires significant temporal communication, we investigated how the
two-dimensional processor layout affects execution time. Processors can be distributed such that temporal or
spatial degrees of freedom are clustered. Figure 13 plots the wall time per time step for a set of time instances
for both topology options and as expected, the temporal clustering offers significant savings, but does not
affect the asymptotic linear scaling. The calculations were performed on a machine with twenty-four cores
per node; the temporal clustering cases corresponding to N = 4, 8, 12 and 24 each exhibit significantly faster
execution times, even compared to other temporal clustering cases. Complete time histories of these cases
can be packed onto a single node significantly increasing the communication speed for the temporal coupling
stages. In general, temporal clustering offers roughly a 40% reduction in execution time as compared to the
spatial clustering topology. In light of these results, we may explore the use of GPUs or Many-in-core (MIC)
chips to enable more time samples to be packed onto a single processor or node to use shared memory for
temporal coupling. Instantiating several time samples on a single core may also provide savings. Nevertheless,
we do not expect a general relaxation of the linear scaling of the Time-Spectral method and will therefore
focus our efforts on schemes with a fixed amount of sequential temporal coupling with the goal of achieving
massive scaling for realistic rotorcraft and wind turbine calculations. The use of shared memory and temporal

4The FDMT-4 scheme is only applied to cases with N > 4 and the FDMT-8 scheme is only applied to case with N > 8
because there are not enough sample points to form the derivative with the desired accuracy below those values.
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clustering should also benefit compactly-supported approaches where only fringe communication would be
required, thereby reducing execution time even further.

Figure 14 provides the time per iteration of the subiterative space-time scheme for the Time-Spectral and
FDMT methods. As anticipated, the wall clock time of the FDMT method remains nearly constant with
increasing N , and a corresponding increase in the number of processors. This demonstrates near-optimal
weak scaling of the wall clock time per iteration. In contrast, the TS method shows a linear increase in wall
clock time per iteration once N grows large enough such that the temporal communication dominates the
overall cost (approximately N = 16). Combining the data presented in Figs. 12 and 14 demonstrates the
wall time per iteration required to achieve a given level of accuracy for each method. Figure 15 plots error
versus wall time per iteration. Each successive data sample corresponds to a doubling of N . For the single
frequency case (Figure 15a), there is not much difference in wall time per iteration between the FDMT and
TS approaches, as only a few time samples are required to reduce the error of the Fourier representation
to within machine precision. However, the more complex signal corresponding the to multiple frequency
kernel requires a substantial number of harmonics to reduce the error to within machine precision. Figure
15b demonstrates that a given level of accuracy can be achieved by the FDMT method with a wall time
per iteration that is many times lower than the wall time per iteration taken by the TS method to achieve
the same level of accuracy. Since the wall time per iteration is essentially fixed for the FDMT methods, the
speedup of the FDMT method over TS increases with the complexity of the solution.

The favorable scalability of the FDMT method suggests that it may successfully provide periodic PinT
calculations with a similar level of accuracy in a fraction of the execution required for SinT time advancement.
However, this does require a more robust solver that does not impose severe restrictions of the time step,
which is currently the case. Even though the wall time per iteration is essentially constant for the FDMT
methods, large values of N require a substantially smaller pseudo time step, preventing weak scaling with
respect to time-to-solution. Development of a more robust solver is a primary focus of future work.

VII. Summary and Future Work

A solver framework has been introduced for the rapid development, testing and analysis of time-parallel
calculations for time-periodic flows. The framework that currently includes a Cartesian flow solver and a
standalone Parallel-in-Time library can be coupled to additional flow solvers in the future to compute more
complex flows including curvilinear and unstructured body-fitted grids. The methodology developed can
ultimately be incorporated into full-scale production codes such as Helios to facilitate realistic time-parallel
calculations of realistic rotorcraft and wind turbine configurations.

A wind turbine case was introduced to motivate the need for many time instances in PinT calculations
as the signals induced from rotating blades onto stationary Cartesian background grids include sharp dis-
turbances that require high resolution, even for discrete Fourier methods such as the Time-Spectral scheme.
An algebraically-accurate analog to the TS method was introduced and applied to a simplified periodic den-
sity pulse case. The new formulation demonstrates weak scalability as the temporal resolution is increased
dramatically. This demonstration provides encouragement that this methodology will be able to scale to
millions of processors on real problems.

Future work includes the development of a GMRES solver using the FDMT approach to provide scalable
time-to-solution; i.e. the same time to solution is achieved for a problem size twice as large on twice as many
cores by removing the time step restriction for increasing N . Other compactly-supported discretizations
may also be explored. Because rotorcraft in hover and wind turbines involve a slow freestream, if any at
all, multigrid and multilevel schemes will be explored as GMRES preconditioners to more rapidly propagate
the solution throughout the domain. A temporal multigrid scheme may provide the robustness desired for
the FDMT approach while retaining the ability to factor the implicit operator between time and space in
order to maintain the portability of the PinT library. As demonstrated, temporal communication is greatly
reduced when all of the temporal degrees of freedom are situated close to each other within the processor
topology map; we will investigate additional ways to leverage processor proximity by instantiating multiple
time samples on each process, which would allow the use of shared memory within a node and further
reduce temporal communication. We would also like to add adaptive temporal mesh refinement with proper
load balancing because the highest temporal resolution is primarily required in the vicinity of the moving
geometry and we can more efficiently allocate the resources provided by coarsening the temporal resolution
away from dynamic regions of the flow. Various sensors can initially drive coarsening and refinement of the
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temporal mesh, but ultimately the goal is to use a fully-automated, adjoint-based error estimation to adapt
the complete space-time mesh with sophisticated dynamic load balancing to further reduce execution times.
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(a) Time-Spectral (b) FDMT-2

Figure 1: Nonzero entries for temporal differentiation operators. In the current PinT framework, each
nonzero entry requires inter-processor communication. The bandwidth of the TS operator grows with N
but the bandwidth is fixed to p/2 for a p-th order central difference operator enabling the algorithm to scale
weakly.
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(a) Speedup

(b) High-order Resolution

Figure 2: Cartesian flow solver (CART) applied to canonical Taylor-Green vortex problem using a high-order
discretization (sixth-order accurate inviscid flux and fourth-order viscous flux discretizations) with RK3 time
integration. (a) Parallel speedup for a grid consisting of more than one billion points

(
10243

)
up to 110,592

cores. (b) High-order resolution approaching exact spectral solution [78].

22 of 34

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 V

in
od

 L
ak

sh
m

in
ar

ay
an

 o
n 

Ja
nu

ar
y 

11
, 2

01
6 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

6-
00

66
 



(a) TS, N = 3 (b) BDF2, ∆t = T/180

(c) TS, N = 5 (d) BDF2, ∆t = T/360

(e) TS, N = 9 (f) BDF2, ∆t = T/720

(g) TS, N = 17 (h) BDF2, ∆t = T/1440

(i) TS, N = 33 (j) BDF2, ∆t = T/2880

Figure 3: NREL Phase VI Wind Turbine. Time-Spectral and BDF2 Solutions. Axial velocity contours
and iso-contours of vorticity magnitude for Time-Spectral calculations using N ∈ {3, 5, 9, 17, 33} and BDF2
calculations using a physical time step, ∆t = T/N , for N ∈ {180, 360, 720, 1440, 2880}.
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0.0 0.5 1.0 1.5 2.0 2.5
−1

0

1

2
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·10−2

t/T

ρ
u

BDF2
N = 3
N = 5
N = 9
N = 17
N = 33

Figure 4: NREL Phase VI Wind Turbine. Space-Time Approximate Factorization Time-Spectral Method.
Values of streamwise momentum, ρu, sampled at a sensor point close to the rotor plane are plotted for
N ∈ {3, 5, 9, 17, 33} at their respective collocation points in addition to their Fourier reconstructions with
solid lines of the corresponding color. The BDF2 solution is plotted for the first 2.5 periods of turbine
rotation.
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(a) N = 5
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(b) N = 9
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(d) N = 33

Figure 5: NREL Phase VI Wind Turbine. Space-Time Approximate Factorization Time-Spectral Method.
Values of streamwise momentum, ρu, sampled at a sensor point close to the rotor plane are plotted for
N ∈ {5, 9, 17, 33} at their respective collocation points in addition to their Fourier reconstructions with solid
red lines. The black curve represents the BDF2 solution and the hashed blue represents the filtered BDF
solution to K = (N − 1) /2 modes.
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(a) Single-frequency kernel, γ (t) = sin (ωt)

(b) Multiple-frequency kernel, γ (t) = 2
5+4 cos(2ωt)

− 1

Figure 6: Periodic Density Pulse. Grid and contours of density on constant y-plane for both the (a) single
frequency and (b) multiple frequency kernels at time t = 0.
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(a) Space-time residual versus iteration
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(b) Space-time residual versus wall time
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(c) Space-time residual versus wall time per time instance

Figure 7: Periodic Density Pulse. Scaling of the Space-Time Approximate Factorization Time-Spectral
Method applied to the single-frequency kernel case. Convergence of residual for different number of time
instances, N . Residual versus (a) iteration (b) wall time and (c) wall time per temporal degree of freedom.
This case used a reduced frequency of ω = 1 on a 503 mesh partitioned into fifteen blocks. Thus the overall
number of processors Nproc = 15N for each calculation.
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(a) Space-time residual versus wall time

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
10−16

10−12

10−8

10−4

Wall time per time instance (s)

‖R
‖ 2

(b) Space-time residual versus wall time per time instance
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(c) Space-time residual versus iteration

Figure 8: Periodic Density Pulse. Scaling of the Time-Spectral method using the space-time approximate
factorization solver applied to the single-frequency kernel case. Convergence of residual for different number
of time instances, N , and frequencies, ω. Space-time residual versus (a) wall time (b) wall time per time
instance and (c) iteration. The base frequency is defined as: ω0 = ω/a, where a is the speed of sound
and ω = 7.54 rad/s is the radial frequency of the NREL Phase VI wind turbine in §VI.A. The 653 mesh is
partitioned into twelve blocks for a total of 12N processors for each calculation.
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(c) Space-time residual versus non-linear iteration

Figure 9: Periodic Density Pulse. Scaling of the GMRES Time-Spectral method using a space-time approx-
imate factorization preconditioner applied to the single-frequency kernel case. Convergence of residual for
different number of time instances, N , and frequencies, ω. Space-time residual versus (a) wall time (b) wall
time per time instance and (c) non-linear iteration. The base frequency is defined as: ω0 = ω/a, where a is
the speed of sound and ω = 7.54 rad/s is the radial frequency of the NREL Phase VI wind turbine in §VI.A.
The 653 mesh is partitioned into twelve blocks for a total of 12N processors for each calculation.
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Figure 10: Periodic Density Pulse. Subiterative Space-Time Scheme applied to the single-frequency kernel,
γ (t) = sin (ωt). BDF2 (black curve), Time-Spectral and FDMT solutions for N ∈ {4, 8, 16, 32, 64, 128}
are plotted. Density is sampled at a sensor located in the center of the domain. The dots correspond
to the solution at the N time instances and the solid lines represent the reconstruction using the discrete
Fourier series for all cases. The N = 4 case and N = 4, 8 cases are not plotted in the respective FDMT-4
and FDMT-8 figures, respectively, as the bandwidth is not large enough for the specified number of time
samples.
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Figure 11: Periodic Density Pulse. Subiterative Space-Time Scheme applied to the multiple-frequency kernel,
γ (t) = 2

5+4 cos(2ωt)−1. BDF2 (black curve), Time-Spectral and FDMT solutions for N ∈ {4, 8, 16, 32, 64, 128}
are plotted. Density is sampled at a sensor located in the center of the domain. The dots correspond to the
solution at the N time instances and the solid lines represent the reconstruction using the discrete Fourier
series for all cases. The N = 4 case and N = 4, 8 cases are not plotted in the respective FDMT-4 and
FDMT-8 figures, respectively, as the bandwidth is not large enough for the desired number of samples.
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(a) Single frequency, γ (t) = sin (ωt)
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(b) Multiple frequencies, γ (t) = 2
5+4 cos(2ωt)

− 1

Figure 12: Periodic Density Pulse. Order-of-accuracy verification for the (a) single-frequency and (b) multiple
frequency cases using the subiterative space-time scheme. The exact solution, qex, is taken as the TS solution
for N = 512; error is evaluated at time t = 0. Hashed lines correspond to the expected order of accuracy.
Each grid of 653 mesh points is partitioned into six blocks for a total of 6N processors for each calculation.
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Figure 13: Periodic Density Pulse. Space-Time Approximate Factorization Time-Spectral Method. Wall time
per iteration is plotted for both spatial and temporal processor clustering. All computation was executed
on machine equipped with twenty-four cores per node. Each grid of 653 mesh points is partitioned into
twelve blocks for a total of 12N processors for each calculation. While the temporal clustering exhibits
better performance than the spatial clustering topology, the particular cases of N = 4, 8, 12 and 24 enable
the entire time history of blocks to be packed into a single node and exhibit further reduction in wall time
per iteration.
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Figure 14: Periodic Density Pulse. FDMT versus Time-Spectral using the subiterative space-time solver.
Wall time per iteration forN ∈ {4, 8, 16, 32, 64, 128, 256, 512}. The second-, fourth- and eighth-order accurate
FDMT cases exhibit near-optimal weak scaling while the Time-Spectral case exhibits linear scaling (hashed
black line). Each grid of 653 mesh points is partitioned into six blocks for a total of 6N processors for each
calculation.
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(a) Single frequency, γ (t) = sin (ωt)
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Figure 15: Periodic Density Pulse. Error versus wall time per iteration for the (a) single-frequency and (b)
multiple frequency cases using the subiterative space-time scheme. The exact solution, qex, is taken as the
TS solution for N = 512; error is evaluated at time t = 0. Each grid of 653 mesh points is partitioned into
six blocks for a total of 6N processors for each calculation.
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